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A LOWER BOUND FOR THE BAYES RISK FOR TESTING SEQUENTIALLY
THE SIGN OF THE DRIFT PARAMETER OF A WIENER PROCESS

by
Ashim Mallik and Yi-Ching Yao
Massachusetts Institute of Technology

ABSTRACT

Let x(t) be & Wiener process with drift u and
variance 1 per uynit of time. For testing H: uc 0

vs Aty > 0 with the loss function |u| if the wrong

decisjon is made and O othervise, ¢ cost of observation

per unit time and u has a prior distribution which is
normal with mean 0 and variance a:, we followed an
1dea of Bickel and Yshav to obtain a lower bound for the
Bayes risk and showed that this lower bound is strict as

og v = for a1l c.

Key Words: Sequential tests, S.P.R.T, Bayes, atopping
times, lower bound, asywptotic expansion.
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A LOWER BOUND POR THE BAYES RISK POR TRSTING SEQUENTIALLY
THE SIGN OF THE DRIFT PARAMETER OF A WIENER PROCESS

by

Ashim Mallik and Yi-Ching Yao
Massachusetts Institute of Technology

1. Introduction : Let x{t) be a Wiener process with
drift y and variance 1 per unit of time. Chernoff
(2] considered the following problem, test

H: p €0 ve A: u>0

with the loss function |u| 1f the wrong decision is
made and 0 othervise, c cost of observation per unit
time and v has a prior distribution which is normal with
®ean  u, and variance o:. Chernoff (3] ahowed that
the Bayes risk
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By considering the above testing problem with the
additional information of the magnitude of 1, Bickel
and Yahav [1) obtained a lower bound for the Bayes risk
for the case of u having the improper prior distribution
and conjectured that the lower bound can be attained as
c4 0. In this note we assume that y has a normal prior
distribution with mean 0 and variance c:. By using
similar techniques as in Bickel and Yahav (1], we
obtained a lower bound for the Bayes risk, then showed
that this lower bound {s not asymptotically achievable as

2

LR for all c>0.

2. Lower Bound For Bayes Risk: Prom Chernoff [3},
the posterior cost of wrong decision is given by

-172
(EXS RN A («oo;’) ‘0(u)-|u|0(-|a|d

-172
where o = (uuaz) X{t). Let the posterior risk at

time t Dbe,
2.2 Ric,t) = Y! + ct
We are interested in a stopping rule s for which

.(l(c,io)\ - in; BiR(c,1}))
Te
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where T {s the class of all stopping times.

Using the idea of Bickel and Yahav {1], let us
consider the following problem of testing,

#: h-uo vs Axu--uo
with |u°| for cost of wrong decision and prior dis-
tribution Py = uo) - Py = - uo) - % Then the posterior

cast of wrong decision 1s

Ty = lug! POKItIN < 0 | x(e))

flc,t) = ;t 4+ ct

To solve the above Bayes problem, we have to find a
stopping rule 1‘ such that

z(i(e.v')) = Anf E(R(c,t))
T°eT

From the property of S.P.R.T we have the following
lemma.
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Lewma 2.1: The stopping rule T : Stop the first
IX(t}| = a, where "a® is determined by the minimiza-

tion of

-1 -1 -1
luol(lbelp(hluo()) 0caf'u°| (l-l(l‘exp(hluol)))

is _the optimal stopping rule for the above problem.
Lewma 2.2:
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Proof: o is a Bayes rule for a symmetric problem and

hence is symmetric in v . Hence
*
B"[l(c,toll 3 zu(i{c.t 1] for all v

From it the lemma follows.
Theorem:
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Proof: Let
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where “a® is the solution of the minimizstion problem
in Lemma 2.1. Then 1 ghould satisfy the relation
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We have by using (2.3), (2.4) and Lewma 2.1,
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Lesma 2.) and Lemma 2.4 we get the Theorem.

From (2.5},
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From (1.1}, Lemms 2.2 and the Theorem, we have the

following corollary to the Theorew.

Corollary: K> K
Nemark: Consider the case of u having a prior distribution

of Labesgue measure. FPor any stopping rule T,

1
- -1/2 = 2 2
RO, 118 = tim (lvuuz)’ I(!-u:) { Rty,ne™ 7290 gy
— 0, - —-
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50 the Bayes risk with respect to Lebesyue measure

inf | Rlu.) oy > xe?/? s pe 3D
t -

for all c > 0.

fere, K° e’/’ {9 the lower bound derived in (1).
Therefore, we have shown that Bickel and Yahav's lower

bound cannot be attained.
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